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1 Introduction

Recently, related to the RHIC and LHC experiments, understanding strongly interacting

QCD is requesting much attention. Although a powerful method for this subject, the lattice

QCD, is being developed, when it comes to the dense matter problem, lattice calculation

has difficulty and not much result is produced so far. The AdS/CFT correspondence [1]

in the string theory, can shed many aspect of hadron theory [2–10] as well as in strongly

interacting quark gluon plasma [11–16]. The theory can easily accommodate the dense

matter problem at least for deconfined phase [4–6, 17]. However, for the the hadron phase,

the status is not very clear since even the phase diagram is qualitatively different from

that of the real QCD [4, 18]. This may be traced back to the probe approach of the dense

matter and one expect that if one fully account the back reaction of the gravity to the

dense matter, one might overcome the situation.

In fact, in the previous work [10], it was suggested that if one considers bulk filling

branes, one can easily account the full back reaction and the phase diagram actually closes.

However, in that work, the back reacted geometry of the hadronic phase was not fully

identified but was approximately treated as the thermal ads with electric potential.

In this paper we consider the zero black hole mass limit of the charged black hole with

hard wall installed as the low energy pair of the charged black hole. Although it has the

naked singularity at the origin it is hidden in the wall and we do not find any physical

difficulty. With this identification, density dependence of the physical quantities can be

easily calculated. As a first example, we calculated how meson spectrum depends on the

density of the baryonic medium.
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The rest of paper follows: In the section 2, we will briefly review the dual geometry

for the quark-gluon plasma and then propose what is the dual geometry for the hadronic

phase. In the section 3, we will investigate the Hawking-Page transition. We will first

study the fixed chemical potential case and then consider the fixed density problem. In

the section 4, we will investigate the mass of the excited vector mesons in dense medium.

In the section 5, we will summarize our results and discuss some future works.

2 Dual geometry for QCD with quark matters

In AdS/CFT correspondence, the boundary value of the bulk gauge field is coupled to the

dual operator in the QCD side, which is the quark current. Furthermore the boundary

value of the time-component gauge field is the chemical potential its dual operator is the

quark number density. Our main interest here is to see how the critical temperature of

the phase transition depends on the quark chemical potential. To describe the region for

the high chemical potential, we need to consider the back reaction of the bulk gauge field

in the dual geometry. Here, we will investigate the asymptotically AdS geometry dual to

QCD with hadronic matters.

We first review the gravity theory in the Mikowskian signature with introducing our

conventions. The gravity action describing the five-dimensional asymptotic AdS space with

the gauge field is given by

SM =

∫

d5x
√
−G

[

1

2κ2
(R− 2Λ) − 1

4g2
FMNFMN

]

, (2.1)

where 2κ2 is proportional to the five-dimensional Newton constant and g2 is a five-

dimensional gauge coupling constant. In the five dimensional AdS space, the cosmological

constant is given by Λ = −6/R2, where R is the radius of the AdS space. The equations

of motion of this system becomes

RMN − 1

2
GMNR + GMNΛ =

κ2

g2

(

FMP FP
N − 1

4
GMNFPQFPQ

)

,

0 = ∂M

√
−GGMP GNQFPQ, (2.2)

where M,N = 0, 1, . . . , 4, x0 = t and x4 = z. Under the following ansatz

A0 = A0(z),

Ai = A4 = 0 (i = 1, . . . , 3),

ds2 =
R2

z2

(

−f(z)dt2 + dx2
i +

1

f(z)
dz2

)

, (2.3)

the most general solution of eq. (2.2) known as the Reissner-Nordstrom AdS black hole

(RNAdS BH) is

f(z) = 1 − mz4 + q2z6,

A0 = µ − Qz2, (2.4)
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where the boundary space, denoted by xµ =
{

x0, xi
}

, is located at z = 0. So, µ is a

boundary value of A0 and Q is related to the black hole charge q through

q2 =
2κ2

3g2R2
Q2. (2.5)

In the AdS/QCD context [10], the gravitation constant 2κ2 and the five-dimensional cou-

pling constant g2 are related to the rank of the gauge group Nc and the number of the

flavor Nf in QCD
1

2κ2
=

N2
c

8π2R3
and

1

g2
=

NcNf

4π2R
, (2.6)

so that eq. (2.5) can be rewritten as

Q =

√

3

2

Nc

Nf
q. (2.7)

2.1 Dual geometry of the quark-gluon plasma

For investigating the Hawking-Page transition dual to the C/D phase transition in QCD,

it is more convenient to consider the Euclidean version. Here, we summarize the Euclidean

RNAdS BH shortly, which corresponds to the deconfinement phase described by the quark-

gluon plasma.

By the Wick rotation t → −iτ , the Euclidean version of the previous action

in eq. (2.1) reads

S =

∫

d5x
√

G

[

1

2κ2
(−R + 2Λ) +

1

4g2
FMNFMN

]

, (2.8)

where GMN is the Euclidean metric ansatz

ds2 =
R2

z2

(

f(z)dτ2 + d~x2 +
1

f(z)
dz2

)

. (2.9)

The equations of motion for this system become

RMN − 1

2
GMNR + GMNΛ =

κ2

g2

(

FMP FP
N − 1

4
GMNFPQFPQ

)

,

0 = ∂M

√
GGMP GNQFPQ. (2.10)

Under the following ansatz

Aτ = A(z),

Ai = A4 = 0, (2.11)

the most general solution is nothing but the Euclidean RNAdS BH, so that the metric

factor f(z) is the same as one in the Minkowski version. Finally, the metric solution is

ds2 =
R2

z2

(

(1 − mz4 + q2z6)dτ2 + d~x2 +
1

1 − mz4 + q2z6
dz2

)

. (2.12)
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From now on, we consider the Euclidean version only. Because Fzt = −Ftz = ∂zAt, the

Maxwell equation can be reduced to the simple form

0 = ∂z

(

R

z
∂zA(z)

)

, (2.13)

and the solution is given by

A(z) = i
(

µ − Qz2
)

. (2.14)

Note that the imaginary number, i, in the above is very important to satisfy the Einstein

equation in eq. (2.10), which naturally appears due to the Wick rotation.

From the metric in eq. (2.12), the outer horizon denoted by r+ should satisfy

0 = f(z+) = 1 − mz4
+ + q2z6

+. (2.15)

Using the above, we can replace the black hole mass m with a function of the outer horizon

z+ and the black hole charge q

m =
1

z4
+

+ q2z2
+, (2.16)

which is useful for the later convenience. The Hawking temperature of the RNAdS BH is

given by

TRN =
1

πz+

(

1 − 1

2
q2z6

+

)

. (2.17)

For the norm of ||A(z)|| ≡ gττAτAτ at the black hole horizon to be regular, we should

impose the Dirichlet boundary condition A(z+) = 0 [4, 5, 10, 19, 20], which gives a relation

between Q and µ

Q2 =
µ2

z4
+

. (2.18)

Inserting this relation and eq. (2.5) into eq. (2.17), we can find z+ as a function of µ

and TRN

z+ =
3g2R2

2κ2µ2

(

√

π2T 2
RN +

4κ2µ2

3g2R2
− πTRN

)

. (2.19)

To describe a system having the fixed chemical potential, we should impose the Dirich-

let boundary condition, A(0) = iµ, at the UV cut-off z = ǫ where ǫ is very small. Then,

the on-shell action becomes

SD
RN =

V3R
3

κ2

1

TRN

(

1

ǫ4
− 1

z4
+

− 2κ2

3g2R2

µ2

z2
+

)

, (2.20)

where V3 corresponds to the spatial volume of the boundary space. In the above action, the

superscript D and the subscript RN imply the Dirichlet boundary condition at the UV cut-

off and the RNAdS BH, respectively. Since this action has a divergent term when ǫ → 0, we

should renormalize it. For the renomalization, we use the background subtraction method,

– 4 –
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in which the on-shell action for the AdS space is subtracted from SD
RN . The on-shell action

for the AdS space is

SAdS =
V3

2κ2

∫ β

0
dτ

∫ ∞

ǫ

dz
√

G (−R + 2Λ)

=
V3R

3

κ2

β

ǫ4
. (2.21)

After identifying the circumference of the RNAdS BH and the AdS space at the boundary,

we can rewrite β as

β =
1

TRN

(

1 − 1

2
mǫ4 + O(ǫ6)

)

. (2.22)

Therefore, the on-shell action of the AdS space becomes

SAdS =
V3R

3

κ2

1

TRN

(

1

ǫ4
− 1

2z4
+

− κ2

3g2R2

µ2

z2
+

)

, (2.23)

where eq. (2.5), eq. (2.16) and eq. (2.18) are used. As a result, the renormalized action of

the RNAdS BH is given by

S̄D
RN = SD

RN − SAdS

= −V3R
3

κ2

1

TRN

(

1

2z4
+

+
κ2

3g2R2

µ2

z2
+

)

, (2.24)

and the grand potential becomes

ΩRN = S̄D
RNTRN

= −V3R
3

κ2

(

1

2z4
+

+
κ2

3g2R2

µ2

z2
+

)

. (2.25)

For describing the dependence of the particle number in this system, we should consider

the free energy F obtained by the Legendre transformation of the grand potential. In the

thermodynamics, it is given by

F = Ω + µN, (2.26)

where N = −∂Ω
∂µ

. Using the fact that z+ can be represented as a function of µ and T like

eq. (2.19), N is given by

N =
2R

g2
QV3, (2.27)

where the particle number N is proportional to the quark number density Q. As a result,

the free energy becomes

F = Ω +
2R

g2
µQV3. (2.28)

Interestingly, this result can be reobtained from the action eq. (2.8) with the different

boundary condition at the UV cut-off. For changing the Dirichlet boundary condition into

the Neumann boundary condition, we should add a boundary term to fix Q. Then, the

renormalized action is given by

S̄N
RN = S̄D

RN + Sb, (2.29)

– 5 –



J
H
E
P
0
7
(
2
0
0
9
)
0
8
7

where the superscript N implies the Neumann boundary condition at the UV cut-off and

the boundary action Sb is given by

Sb =
1

g2

∫

∂M

d4x
√

G(4) nMANFMN . (2.30)

In the above, the unit normal vector is given by nM =
{

0, 0, 0, 0, z
R

√

f(z)
}

and G(4) =

R8

z8 f(z) is a determinant of the four-dimensional boundary metric. Using the solution for

the bulk gauge field in eq. (2.14), the boundary term becomes

Sb =
V3

TRN

2R

g2
µQ. (2.31)

So, the free energy reads

F = S̄N
RNTRN = Ω +

2R

g2
µQV3, (2.32)

which is the same as one obtained from the thermodynamics in eq. (2.28). From these

results, we may conclude that the five-dimensional bulk action with the Dirichlet or Neu-

mann boundary condition at the UV-cut off corresponds to the grand potential or free

energy of the dual QCD, respectively.

2.2 Dual geometry of the hadronic phase

In QCD, it is well known that there exist the hadronic or confinement phase at the low

temperature. In the absence of quark matters, the Schwarzschild AdS black hole (SAdS

BH) corresponds to the deconfinement phase. At the low temperature, the dual geometry

for the confinement phase is given by the thermal AdS with the IR cut-off, which is needed

to explain the confining behavior [21]. What is the dual geometry describing the hadronic

phase, in other words the confinement phase with quark matters? As shown in the previous

section, we should include the bulk gauge field to explain the quark matters. Therefore,

the geometry corresponding to the hadronic phase has to be a deformed AdS including the

backreaction of the bulk gauge field, which is not a black hole. The metric we find out to

answer the above question, is

ds2 =
R2

z2

(

(1 + q2z6)dτ2 + d~x2 +
1

1 + q2z6
dz2

)

, (2.33)

which together with eq. (2.14) satisfies the Einstein and Maxwell equation and becomes

a AdS space asymptotically. This solution can be also easily obtained from the RNAdS

BH by taking m = 0. For the convenience, we call this solution as a thermal charged AdS

(tcAdS) solution. Especially, in the case of q = 0, the tcAdS and RNAdS BH are reduced

to the thermal AdS (tAdS) and SAdS BH, respectively. Here, our proposition is that the

tcAdS having the IR cut-off zIR is the dual geometry corresponding to the hadronic phase.

Now, we study the thermodynamics of the tcAdS with the fixed chemical potential,

for which the Dirichlet boundary condition is needed at the UV cut-off. At the IR cut-off

we impose another Dirichlet boundary condition

A(zIR) = iαµ, (2.34)

– 6 –
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where α is a arbitrary constant and will be determined later. This IR boundary condition

together with eq. (2.14) gives a relation between µ and Q

Q =
(1 − α)µ

z2
IR

. (2.35)

Using this, the on-shell action of the tcAdS is given by

SD
tc =

V3R
3

κ2

1

Ttc

(

1

ǫ4
− 1

z4
IR

− 2κ2

3g2R2

(1 − α)2µ2

z2
IR

)

, (2.36)

where the subscript tc means the tcAdS. To renormalize this action, we subtract the on-shell

action of the AdS space in eq. (2.21), with the identification between the circumferences of

two backgrounds at the UV cut-off

β =
1

Ttc

(

1 + O(ǫ6)
)

. (2.37)

Then, in the limit of ǫ → 0 the renormalized action of the tcAdS becomes

S̄D
tc = −V3R

3

κ2

1

Ttc

(

1

z4
IR

+
2κ2

3g2R2

(1 − α)2µ2

z2
IR

)

. (2.38)

From this, the particle number N is given by

N =
2

3
(1 − α)

2R

g2
QV3. (2.39)

Since the action with the Neumann condition should be a free energy as previously men-

tioned, µN = SbTtc should be satisfied. Using the fact that the boundary action Sb of the

tcAdS is given by

Sb =
µ

Ttc

2R

g2
QV3, (2.40)

α should becomes −1/2 for the consistency. As a result, the renormalized action becomes

S̄D
tc = −V3R

3

κ2

1

Ttc

(

1

z4
IR

+
3κ2

2g2R2

µ2

z2
IR

)

, (2.41)

with the following relation

µ =
2

3
Qz2

IR. (2.42)

3 Confinement/deconfinement phase transition

In QCD, there exists the C/D phase transition, which is dual to the Hawking-Page transi-

tion in the gravity theory side. So it is an interesting question to ask how the C/D phase

transition depends on the quark matters. As mentioned previously, we should introduce

the IR cut-off to describe the confining behavior of the hadronic phase, which is called the

hard wall model. There were many interesting works to explain QCD depending on quark

matters. In our previous work [9], we studied the dependence of the quark (number) den-

sity in the C/D phase transition by considering the gauge field fluctuation on the tAdS and

– 7 –
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SAdS BH backgroud. Unfortunately, its result is valid only in the regime of the low quark

number density so that it can not explain the dependence of the high chemical potential

and quark density. Anyway, the crucial point of the tcAdS and RNAdS BH backgrounds

is that since they include the full backreaction of the gauge field, we can investigate the

dependence of quark matters even in the high chemical potential or quark density regime

using this model.

3.1 Fixed quark chemical potential

For the fixed chemical potential, to describe the Hawking-Page transition we calculate the

difference between the on-shell actions of two backgrounds, with the Dirichlet boundary

condition at the UV cut-off,

∆S = SD
RN − SD

tc , (3.1)

with

SD
RN =

V3R
3

κ2

1

TRN

(

1

ǫ4
− 1

z4
+

− 2κ2

3g2R2

µ2

z2
+

)

,

SD
tc =

V3R
3

κ2

1

Ttc

(

1

ǫ4
− 1

z4
IR

− 3κ2

2g2R2

µ2

z2
IR

)

. (3.2)

After requiring the same circumference of τ at the UV cut-off, the difference becomes

∆S =
V3R

3

κ2

1

TRN

(

1

z4
IR

− 1

2z4
+

+
3κ2

2g2R2

µ2

z2
IR

− κ2

3g2R2

µ2

z2
+

)

, (3.3)

which is the same as one obtained from the renormalized actions in the limit of ǫ → 0. The

Hawking-Page transition corresponding the C/D phase transition occurs at ∆S = 0. Note

that the C/D phase transition occurs only in the range of z+ ≤ zIR. So we will consider

the case of z+ > zIR from now on. Suppose that ∆S is zero at a critical point z+ = zc. In

the case of z+ < zc, ∆S becomes negative. So the RNAdS BH is stable, which implies that

the dual boundary theory is described by quark-gluon plasma or the deconfinement phase.

In the Schwarzschild black hole case, since there is no black hole charge, the dual theory is

described by the gluon only, without including quark matters. Anyway, for zc < z+ ≤ zIR

the stable space is the tcAdS. Since the tcAdS corresponds to the confinement phase, the

dual QCD describes the hadronic matters.

For the later convenience, we introduce dimensionless variables as the following

z̃c ≡ zc

zIR
,

µ̃c ≡ µczIR,

T̃c ≡ TczIR, (3.4)

where the subscript c means the critical values representing the C/D phase transition point.

Then, the critical chemical potential µ̃c and temperature T̃c can be represented as functions

– 8 –
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Figure 1. The deconfinement temperature depending on the chemical potential, which does not

contain the quark mass.

of z̃c

µ̃c =

√

3Nc

Nf

(1 − 2z̃4
c )

z̃2
c (9z̃2

c − 2)
,

T̃c =
1

πz̃c

(

1 − 1 − 2z̃4
c

9z̃2
c − 2

)

. (3.5)

To obtain a well-defined chemical potential, the inside of the square root in the above should

become positive. So the allowed range of z̃c is give by 0.4714 . z̃c . 0.8409. Though at

µ̃c = 0 the deconfinement temperature Tc = 122 MeV is lower than the lattice estimation

Tc = 175 ∼ 190 MeV [22, 23] as noted by Herzog [21], we use Tc = 122 MeV and look

at the qualitative behavior of the deconfinement temperature depending on the chemical

potential. We obtain the expected phase diagram, which is given in the figure 1. Notice

that the deconfinement temperature decreases more quickly as the ratio Nf/Nc goes up.

In the holographic models with probe brane approach, the phase diagram does not close.

However, in our case the phase diagram closes due to the backreaction of the gauge field as

emphasized in ref. [10]. In the zero temperature the critical value of the phase transition,

µc(Tc = 0) is given by 1002 MeV for Nf/Nc = 1. Note that our definition of the chemical

potential does not include quark mass. From this, we can evaluate the the critical baryon

chemical potential with mass,

µ̄B = 3µ + mB ≈ 4GeV, (3.6)

where mB is the baryon mass. For more realistic value, we should use different normaliza-

tion or other models like the one suggested in ref. [24].

3.2 Fixed quark number density

For the fixed quark number density, we should add a boundary term for fixing Q, which

corresponds to the Neumann boundary condition at the UV cut-off. The on-shell actions

– 9 –
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Figure 2. The Hawking-Page transition temperature depending on the quark number density.

of the RNAdS BH and the tcAdS are given by

SN
RN =

V3R
3

κ2

1

TRN

(

1

ǫ4
− 1

z4
+

+
4κ2Q2

3g2R2
z2
+

)

,

SN
tc =

V3R
3

κ2

1

Ttc

(

1

ǫ4
− 1

z4
IR

+
2κ2Q2

3g2R2
z2
IR

)

. (3.7)

Then, the difference between two on-shell actions becomes

∆S ≡ SN
RN − SN

tc

=
V3R

3

κ2

1

TRN

[

1

z4
IR

− 1

2z4
+

+
κ2Q2

3g2R2

(

5z2
+ − 2z2

IR

)

]

. (3.8)

Like the previous section, we assume that zc is a critical value of z+ where the C/D phase

transition occurs. For z+ < zc, the RNAdS BH is more stable than the tcAdS. On the

contrary, the tcAdS is stable for z+ > zc.

After introducing a new dimensionless variable, Q̃c = Qcz
3
IR, the dimensionless quark

number density and critical temperature are given as functions of z̃c

Q̃c =

√

3Nc

2Nf

(1 − 2z̃4
c )

z̃4
c (5z̃2

c − 2)
,

T̃c =
1

πz̃c

[

1 − z̃2
c

2

(1 − 2z̃4
c )

(5z̃2
c − 2)

]

. (3.9)

In the first relation, Q̃c is well defined only in the range,
√

2
5 ≤ z̃c ≤ 1

21/4
, which is

0.6325 . z̃c . 0.8409. Using eq. (3.9), we numerically draw the deconfinement tem-

perature depending on the quark density in the figure 2. As shown in the figure 2, the

deconfinement temperature decreases as the quark density increases. Furthermore, when

the number of flavor becomes large, the deconfinement temperature decreases more quickly

than one having the smaller number of flavor.
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Figure 3. The ρ meson mass depending on the chemical potential.

4 The mass of the excited vector mesons

At first, we consider the ρ meson mass at zero temperature and finite baryon chemical

potential µB , which is given by three times as much as the quark chemical potential,

µB = 3µq. To describe this, we should consider the fluctuation of the vector field in the

tcAdS. The ansatz for the vector field fluctuation is given by

δAµ = Vµ(z, p)eip·x. (4.1)

Since the rotation symmetry in the τ -xi plane is broken, we should distinguish the δA0

with δAi. The equation of motion for δA0 is the exactly same as one obtained in tAdS.

So, from now on we will concentrate on the δAi fluctuation having the following equation

of motion

0 = ∂2
zVi −

1

z

(1 − 5q2z6)

(1 + q2z6)
∂zVi + m2

mVi, (4.2)

where the meson mass is given by m2
m = −p2. After introducing the new dimensionless

variables

Ṽi = VizIR , z̃ =
z

zIR
and m̃m = mmzIR, (4.3)

eq. (4.2) can be rewritten as

0 = ∂2
z̃ Ṽi −

1

z̃

(1 − 5q̃2z̃6)

(1 + q̃2z̃6)
∂z̃Ṽi + m̃2

mṼi. (4.4)

For q̃ = 0, the above equation reproduces the result in tAdS [21]. Due to the C/D phase

transition, the range of the quark chemical potential µ̃ at the zero temperature is limited

from 0 to 5.373 for
Nf

Nc
= 1

3 . Similarly, µ̃ runs from 0 to 3.799 for
Nf

Nc
= 2

3 and from 0 to

3.10217 for Nf/Nc = 1. Through the numerical evaluation, we find the relation between

the chemical potential and the ρ meson mass in the figure 3. As shown in the figure, the ρ

meson mass decreases as the quark chemical potential increases. Note that in the figure 3,

– 11 –
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Figure 4. For Nf/Nc = 2/3, the chemical potential dependence of the excited meson masses.

µ = 0 µ = 0.245 µ = 0.491 µ = 0.736 µ = 0.982 µ = 1.227

mass of the 1st 0.774 0.724 0.622 0.530 0.458 0.404

mass of the 2nd 1.775 1.737 1.702 1.704 1.724 1.750

mass of the 3rd 2.782 2.758 2.743 2.747 2.755 2.762

Table 1. The meson masses of the excited states depending on the chemical potential in the GeV

unit.

the right ends of the curves implies the C/D phase transition point. In addition, the larger

the number of flavor becomes, the more quickly the ρ meson mass decreases.

Finally, we further calculate the masses of the higher excited meson states. After the

numerical evaluation, we draw several excited meson masses for
Nf

Nc
= 2

3 in the figure 4 (see

also table 1. for the numerical values of the masses in the several points of µ). For the ρ

meson, its mass decreases as the chemical potential increases. In the higher mode cases,

their masses decrease for some period of µ and then increase as µ increases (see table 1).

5 Discussion

In this paper, we proposed the thermal charged AdS space as the dual geometry correspond-

ing on the hadronic phase of QCD, which is the zero mass limit of the Reissner-Nordstrom

AdS black hole with the hard wall. This tcAdS was installed as the low temperature

pair of the RNAdS black hole. By comparing the on-shell actions of two backgrounds, we

investigated the confinement/deconfinement phase transition depending on the chemical

potential or the quark number density. Interestingly, we found out that above the critical

chemical potential there exists only the deconfinement phase even at zero temperature and

evaluated the critical chemical potential depending on the flavor number. In addition, us-

ing the dual geometry of the hadronic phase, we calculated how the mass spectrum of the

vector mesons depends on the chemical potential in the baryonic medium.
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In this paper, we evaluated the baryonic chemical potential (≈ 4 GeV), which is too

high comparing with the known result (≈ 1 Gev). So it is important to know how to

cure this discrepancy. Another interesting problem is to study the chemical potential

dependence (or the quark density dependence) of other physical quantities. We will report

those results elsewhere.
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